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Abstract. Using a comoving representation, we derive the conformal anomaly of string 
theory in an alternative path integral formulation. Accordingly, the critical dimensions for 
bosonic and spinning strings are obtained by the residue regularisation method. The 
possibility of constructing a consistent quantum string theory under the subcritical 
dimension is also discussed. 

1. Introduction 

It is well known that the classical bosonic string can be described by the action 
(Polyakov 1981) 

,. 
s = -4 d2u &gab aaxP a d r ,  J 

which has two local symmetries, the reparametrisation and the Weyl rescaling. As a 
consequence of the local Weyl rescaling invariance, the classical energy-momentum 
tensor is traceless. However, the quantisation would in general violate this invariance- 
the conformal anomaly, also called the trace anomaly, appears. While Polyakov (1981) 
first pointed out in the path integral scheme that the conformal anomaly cancellation 
results in a critical dimension D = 26 for the base space, Fujikawa (1979, 1980, 1982, 
1983) rederived this result in a manifestly "-invariant manner, using the heat kernel 
(or Gaussian) regularisation scheme that he proposed in the path integral approach 
to the chiral anomaly. Recently, many authors have continued to attack this problem 
(Bouwknegt and van Nieuwenhuizen 1986, Alvarez 1987, Petcher and Van Holten 
1987). In this paper, we wish to re-examine the conformal anomaly of string theory 
using an alternative formulation of the path integral method proposed by two of us 
(Wang and Ni (1987), hereafter referred to as I; see also Wang and Ni (1988)). 

The organisation of this paper is as follows. In 0 2 the generating functional of 
the bosonic string is treated in a comoving representation (I). In 0 3 the anomalous 
action is calculated by the residue regularisation method ( I )  which results in the critical 
dimension D = 26. Similar manipulation for a spinning string is presented in 0 4. 
Section 5 contains a summary and discussion. 
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2. The bosonic string 

We begin from the classical action of the bosonic string (1.1). First of all, a Wick 
rotation brings us to Euclidean space on the world sheet and a conformal gauge is 
chosen as usual 

g a b  ( = p ( a) 8ab a, b = 1,2 .  (2.1) 

A BRST invariance could be realised by introducing the Faddeev-Popov ghosts 
~(a) = ( $ i z { )  and antighosts .$(a) = (&((T), &(a)). They help to fix the gauge to 
g12( (T) = 0 and gl l (  a) - gZ2( a) = 0. Then the quantum bosonic string is characterised 
by the generating functional (Fujikawa 1982) 

s=f  J d2aa ,  ( ~ ) a Q ( ~ ) + i [ d 2 a ~ 6 8 ( f r j )  - 

where IC1 = 6 and 8 = T ~ C ~ ~  + ~ 3 3 2  with T~ and T~ being Pauli matrices, while = G X ,  
and ;i = p~ are treated as the independent variables. After the Faddeev-Popov prescrip- 
tion, the gauge-fixed action (2.3) still preserves the local Weyl invariance under the 
rescaling transformations 

P ( a )  + e x P [ a ( ~ ) l P ( u )  Rp(a) + exp[$a(u)l2w(u) 

+ e x P [ - M ~ ) 1 5 ( 4  <(a) + exp[a(a)l; i(a).  (2.4) 

For a finite a ( u ) ,  let us introduce a comoving representation and divide the 
transformation into N steps: a l ( u )  = t la(a) ,  to = 0,. . . , tN = 1. Defining zw(')= 
e"l/22p, @') = e-al/2f and f" '  = e%j, one can write at any intermediate step 

Z[ p e":] = [dk'"'][d~"'][d~'"] 

x exp( -[ d2a(-$RW(') e-"c/2 -1 /2 -1/2 

J 
P aaaap 

+ i p  e"'/2pl/28p-' e-"i 

where an operator 

R'," = i exp[$nai]pn/2$p-(n+1)/Z exp[-$(n + l ) a i ]  (2.6) 

is defined in general with n being an integer or half integer. Notice that 

n (2.7) R(i)t = RCL-l 
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so R',) is not a Hermitian operator except for n = -4. However, both R:ltR!) and 
R:'R',''t are Hermitian. Thus there are two component functions U;; and U;? 
satisfying (I)  

and 

(2.9) 

where {U',?} and {U:;} (s = 0, 1 , 2 , .  . .) each constitute a complete orthonormal set. The 
extra factor i in the first term of the integrand in (2.5) is due to the fact that 
R tR  0 0 -  - -p-1/288p-'/2 is a 2 x 2 matrix operator whereas -( l / ~ ' & ~ a ~ (  l / G )  is a scalar 
Laplacian. 

As in I, one can write 

where 

N-1 

AT= Sri 
i = O  

(2.11) 

(2.11') 

Sri = -fD In det(Rt'tRg')+ln det(Ri") -[-fD In det(Rt+"tRtf l ' )+ln det(R$'+")] 

= -fD Tr In( Rt'tRg') + Tr ln(R$')) 

+&D Tr ln(Rg+')tR6'+1)) -Tr 1n(Rii+')). (2.12) 

N + cy), Sti  = ti+l - ti + 0 and one has 

Then, e.g., 

Tr In R$'+') - Tr In R$" 

(2.15) 

where equations (2.14) and (2.8) and the approximation ln(1 + x)  = x have been used. 
Therefore 

(2.16) 
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3. The method of residue regularisation 

Obviously, each of the three sums in (2.16) is divergent, so a regularisation procedure 
is needed. Hence, instead of the ill-defined trace 

Tr((")cx,) = I d2acui(a) 1 S ~$:~(a)u! ; (a)  

[Tr('"'ai)lreg= (I d 2 a a i ( u )  S u;:'f(&, R ! ) t R ! ) ) ~ n s )  

(3.1) 

we define a regularised trace 

(3.2) 
%independent 

where 

(3.3) 

The contour C on the complex z plane is selected such that it bypasses the origin and 
ends at Re z + 00 (see I). In what follows we shall trade the summation over eigenstates 
of Ry)tR!) with the integration in momentum space. Thus in the space spanned by 
the plane wave exp(ik,a,), if we denote 

p = e +  4=++ai  (3.4) 
then the operators R'," and R',''t can be recast into 

with the derivative symbol d only acting on J(a) situated to its right. So 

QZQ, =e-6 [~ (n+l ) f (n -1 ) (d~)2+~(n+1) (d2~)+(d~)8 -dd]  (3.7) 

(3.8) 

(3.9) 

Ry)tR:) = Q',Qn + k2 e-6 - K 

where 

K = i  e - ' ( kd+dR - f ( n +  l)R(dJ)++(n -1)(dJ)k). 

Furthermore, an expansion 

(3.10) 

is used without worrying about its convergence property. This is because when we 
pick the contributions of residues in integral (3.3) on the complex z plane, only the 
6-indqpendent terms are taken into account, so only finite terms in (3.10) survive. The 
integration with respect to k is performed by using a well known formula 

(3.11) 

where B ( p ,  v )  = r ( p ) T (  v ) / I - ( p  + v) is the beta function. 
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After careful calculation, we find 

[Tr('"'ai)lreg= I d'aai(cr)( --) 3 n + l  Tr 8'6 
2 4 ~  

= d'a t ia(a)[d2 In p + tia'a]. 
127r 

(3.12) 

In order to regularise the summation C, u ~ ~ ) u t ~ ,  we should use R;)R;)' to replace 
RY)'R;) in (3.3). Thanks to (2.7), Rt)R!)' = R!it-lR?i-l and no extra labour is needed. 
It is now easy to evaluate Sri by simply substituting (3.12) for n = 0, -2 and 1 into 
(2.16). This gives 

Sri = -ati- D-26 d2at ia(a)(dZlnp+tia 'a) .  
48 7r 

(3.13) 

To calculate the anomalous action (2.11'), we turn to continuous t ( t i + &  Sti+dt, 
6ri + dr) :  

AT=[' dr=-- D-26 I d2aa(a) [3aZlnp+2d2al .  
t = O  72 7r 

(3.14) 

Going back to (2.10), one has 

(3.15) 

Differentiating (3.15) with respect to a and then letting a + 0, one obtains from 

(3.16) 

the following equation: 

( D - 2 6 )  
247r a' In p (3.17) 

where (.  . .) denotes the quantum average. Equation (3.17) implies that the energy- 
momentum tensor, which is conserved at the classical level due to the Weyl invariance, 
now acquires an anomalous contribution at the quantum level 

(3.18) 

Evidently, in the critical dimension of base space D = 26, one can construct a consistent 
quantum bosonic string without a conformal anomaly. This fact may be seen better 
in (2.10) [i.e. (3.15)] with Z [ p  e"] shown as in (2.5). It is the non-invariance of the 
functional integration measure under the transformations (2.4) which is responsible 
for the appearance of the anomalous action, Ar; the latter is obviously not invariant 
under p + p exp[p(a)]. The possibility of constructing a consistent quantum bosonic 
string in a subcritical dimension will be discussed in the final section. 
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4. The spinning string 

We now turn to the spinning string (Brink et al 1976, 1977, Deser and Zumino 1976). 
This is a two-dimensional supergravity. When performing the quantisation, besides 
the reparametrisation symmetry, the local supersymmetry gauge must also be fixed. 
According to the Faddeev-Popov trick, the bosonic ghosts for the gravitino have to 
be introduced. In the superconformal gauge, the full quantum Lagrangian density is 
(Bouwknegt and van Nieuwenhuizen 1986) 

(4.1) 

where the fermion coordinates, the bosonic ghost and antighost have also been redefined 
as GI* = p1’4~I*, [= p3/45 and 1 = p-’ l4h,  respectively. As in 9 2 for the bosonic string 
case, the expression (4.1), and thereby the action, are invariant under the rescaling 
transformations (2.4) together with the following: 

* (4.2) 1 + e - 4 4 1  5 

Repeating steps similar to those leading to (2.16), for the anomalous action acquired 
by an infinitesimal transformation stemming from ai( a) = tia ( U )  to ( t i  + 8ti)a (a), we 
now obtain 

$I* +, ecl/4 -I* [+ e 3 4 4  

v ( i ) t  ( i )  u ~ ~ ~ u ~ ~ + ~ D  ~ ‘ i ) , ~ ~ , , u ? ~ / ~ , ~ - ~ ~  vlS 
S S 

Substituting (3.12) for n =0,  -$, -2, 1, -: and f into (4.2), one gets 

Sri = -ati ( D  - lo) d 2 a  tia ( a ) ( d 2  In p + tia2a). 
3 2 ~  

(4.3) 

(4.4) 

Thus the critical dimension D = 10 follows immediately. 

5. Summary and discussion 

Though it had been speculated for years that the theory of superstrings may be a 
candidate for the unified model for all known interactions, i.e. the theory of everything, 
a series of cardinal problems have to be answered before such a model can be put on 
a sound basis. Among them the problem of the conformal anomaly with relevant 
critical dimension occupies an important position. It deserves to be investigated from 
different aspects and by different approaches. What we have done in this paper is to 
re-examine this problem by the path integral method while using the comoving rep- 
resentation together with a residue regularisation scheme (I). We wish to make two 
remarks. 

As discussed in I, the residue regularisation method used for the chiral anomaly 
may be understood as choosing the zero-mode contributions of a non-Hermitian 
operator (iJ3). The situation for the conformal anomaly considered here seems not to 
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be so simple. Let us formally compute the difference between two Tr a, one regularised 
by RAR, and the other by R,RA, and set a = 1: 

e -52 

Z-R;R, 2 r i  
Tr d2u( fc dz 

=(2n+l ) ( - ' jMd2~,21np) .  4T 

The bracket on the right-hand side of (5.1) can be replaced by the topological Euler 
characteristic x ( M )  on the world sheet of string, M, an orientable compact surface 
without boundaries 

1 x ( M )  = - 4 7  
d2u f i R  

where R is the scalar curvature and 
f i R  = -a2 In p 

(5.2) 

(5.3) 
with g a b  = PSab. 

On the other hand, the left-hand side of (5.1) can be interpreted as the difference 
between the dimension of Ker RLR, and that of Ker R,R;, i.e. 

LHS = dim Ker RL R, -dim Ker R,RL = dim Ker R, -dim Ker RA 

which is nothing but the analytical index of the differential operator R, 
index( R,) = dim Ker R, - dim Ker R i  . (5.4) 

Thus (5.1) becomes 
index(R,) = (2n + l ) x ( M ) .  (5.5) 

This is just the Atiyah-Singer index theorem or its equivalent, the Riemann-Roch 
theorem. We have merely derived it in a special case on a two-dimensional world 
sheet of strings. 

Actually, in the case of the conformal anomaly, life is not so easy. As one can see 
from (2.16) and (4.3), if we still interpret the insertion of the residue regulator (3.3) 
with a &independent prescription as a trick for choosing the zero modes of the operator 
R'," (R',"+ = RCi-J, then the anomalous action is related to a summation of the 
conformal index R$)(F)  over the field F where 

conformal index R:)(F) (-l)"f( n + 1) dim Ker R'," (5.6) 
with f( n + 1) being the conformal dimension of field F under the conformal transforma- 
tions (2.4) and (4.2), and 

if F is a boson field 
if F is a fermion field. 

1 
-1  (-1)F = { (5.7) 

Obviously (5.6) is quite different from the quantity index R, defined in (5.4). 
Now let us turn to the second remark. As shown in (3.14) and (3.15), within 

Z [  p ]  = eArZ[ p ea] (5.8) 
the action in Z [ p  ea] (see (2.5)) is 
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with 

R',*) = i exp(ina)p"/28p-("+1)/2 exp[-i(n+ 1)a] .  

Relabelling the variable 

p eo = p' 

then 
R(") = R:, =i(p')n/28(p')-("+1)/2 

and S' is invariant under the conformal transformations 

p' + ePp' 

6 + e-Pl26 

jp + e P / 2 2 P  

i j  + ePij. 

But correspondingly 

Ar=- (D-26) d2ua(u)(3a2 In p ' -a2a)  
721r 

(5.10) 

(5 .11)  

(5.12) 

is not invariant under the transformations (5.11). Moreover, there are two scalar fields, 
p' and a, involved in Ar. Notice that, however, in establishing the generating functional 
(2.2) by the Faddeev-Popov trick, one has already dropped an integral over the 
reparametrisation group manifold J[dg]. This is valid only for a theory without a 
conformal anomaly. Now for A r # O ,  ( 0 # 2 6 ) ,  one can write down the following 
functional ( p ' +  p again) 

= [ d a ] Z =  [da][d6][dl?P][d6][dij] exp(-S+AI') (5.13) J I  
with S defined in (2.3) and Ar given by (5.12) ( p ' + p ) .  

multiplication constant, one obtains 
Performing the functional integration with respect to a and neglecting the irrelevant 

2= I [ d ~ l [ d g ' l [ d t ~ [ d i ~  exp(-Sefi) (5.14) 

(a In P ) ~ ) .  (5.15) 
12' R 1 ( 0 - 2 6 )  

Seff = d 2 a  -- - aaaa2+i6G8 - 6 + J ( 2 6  6 P 321r 

Hence, at the cost of sacrificing the conformal invariance, a scalar metric field, p ( u ) ,  
becomes a dynamical field. This is the Liouville field theory but without the p 2 p  term. 
Could it serve as a starting point for constructing a quantum bosonic string at subcritical 
dimension (0 < 26)? We do not know yet. The discussion of the spinning string is 
almost the same. A similar argument had been made for anomalous gauge field theories, 
but the outcome seems quite different (Harada and Tsutsui 1987, Falck and Kramer 
1987). Nevertheless, further study is needed. 
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